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INTRODUCTION

It is intended here to present some results of our research on optimi-
zation techniques. Eight known optimum seeking methods are used to optimize
five simple two-variable unconstrained functions. Four of the problems are
presented and analyzed by Witte and Holstl and the other one by Bea.le.2
The type of optimization process reported here is that of locating a set of
values of a set of variables that yields either & minimimm or a maximum
value for a function given in algebraic form.

Each one of the optimizing techniques is programmed in FORTRAN II
language for IBM 709/7090 computers. These programs will be referred to as
CODES from here on.

This instructive exercise is carried out to acquire knowledge on the
different operational characteristics of the computer codes. Familiarity
with the program parameters of each one of the codes and understanding of
their internsl stopping rules is required to introduce the necessary changes
for them to be used in connection with GROPE. GROPE is a Universal

Adaptive Code for Optimization developed by Professor Merrill M. Flood and

the author3’ b at the University of California, Berkeley. A Universal

lWitte, Bruno F., and William R. Holst, "Two New Direct Minimum
Search Procedures for Functions of Several Variables," submitted for pre-
sentation at the 1964 Spring Joint Computer Conference in Washington,
D. C. (27 pages).

2Beale, E. M. L., "On an Iterative Method for Finding a Local Minimum
of a Function of More Than One Variable," Technical Report No. 25, Statis-
tical Techniques Research Group, Princeton University, November 1958
(44 pages).

3Flood, Merrill M., and Alberto Leon, "A Universal Adaptive Code for
Optimization (GROPE)," Space Sciences laboratory, University of California,
Internal Working Paper No. 19, August 1964 (100 pages).

hLeon, Alberto, "Steps Toward a Universal Adaptive Code for Optimi-

zation (GROPE)," Space Sciences leboratory, University of California,
Internal Working Paper No. 11, April 1964 (26 pages).



Adaptive Code for Optimization, as we see it, is a general code which
selects adaptively and sequentially among a group of several optimizing
codes as each problem calculation progresses.

It is also found of interest to compare the behavior of these tech-
niques under identical conditions, that is, with the same set of problems
under the same computing system (University of California, Berkeley,
Executive System).

We do not attempt a detailed description of each technique and the
reader is referred to the proper references. Our obJjective here is to
present some results rather than extensive descriptions or analysis of

the codes.

THE OPTIMIZING TECHNIQUES

The optimization codes we are dealing with are VARMINT, MINFUN, STEP,
LOOK, BEST UNIVAR, ITERATED PARTAN, CONTINUED PARTAN, and a version of the
STEEPEST DESCENT method contained in the PARTAN code.

The eight techniques can be classified into two broad categories:
techniques based on conventional mathematicel methods and techniques of the
DIRECT SEARCH type.

VARMINT, MINFUN, STEP, ITERATED PARTAN, CONTINUED PARTAN and STEEPEST
DESCENT belong to the group of conventional mathematicel methods. These
techniques use in some way or another the gradient of the function to be
optimized and so require the analytical or numerical evaluation of the par-
tial derivatives of that function. The gradient brings the idea of the
direction of fastest improvement toward e solution (either ascending or de-
scending), obviously of great significance. It is enough to say here that
the gradient vector points in the direction in which the function increases

or decreases most rapidly and its length is the rate of increase or



decrease in that direction.

BEST UNIVAR and LOOK are representatives of the DIRECT SEARCH type of
optimizing procedures. Hook and Jeeves’ have written that: "DIRECT SEARCH
is Just sequential examinetion of trial solutions. Each triel solution is
compared with the 'best' obtained up to that time, and there is a strategy
for determining (as a function of earlier results) vwhat the next trial
solution will be."

Next, we described briefly some of the relevent aspects of the eight
codes we are using here.

1. VARMINT (VARIABLES METRIC METHOD FOR MINIMIZATTON):®»7-8

Davidon says: "This is & method for determining numerically local
minima of differentiable functions of several variables. In the process of
locating each minimum, a matrix which characterizes the behavior of the
function ebout the minimum is determined. For a region in which the function
depends quadratically on the veriables, no more than N iterations are re-
quired, where N is the number of variables. By suitable choice of starting
values and without modification of the procedure, linear constraints can be

imposed upon the variables."

sHooke , Re a.nd T. A. Jeeves, "Direct Search Solution of Numericel
and Statistical Problems," J. Assoc. Computing Mach., Vol. 8, 1961,
212-229.

6Davidon, C. Williem, "Variable Metric Method for Minimization,"
Argonne National laboratory, ANL-5990, November, 1959 (21 pages).

7Stevens , D. F., "Instructions for the User of VARMINT, Deck
ZOB0Z013, Lawrence Radiation laboratory, University of California, Berkeley,
June 1961 (18 pages).

‘ 8Fend., F. A., and C. B. Chandler, "Numericel Optimization for Multi-
dimensional Problems," General Electric, General Engineering Leboratory,
Report No. 61 GL78, March 1961 (47 pages).
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Fend and Chandler point out that, "Gradient methods basically enalyze
the changes in slope (i.e. , vector components of the gradient) correspond-
ing to changes in the position of the trial point. They attempt to drive
the components of the slope to zero and thus obtain the location of the op-
timum point which is sought. Davidon's method systematically varies the
metric which specifies the change in vector components of the gradient
corresponding to changes in the location of the best point. In this re-
spect it may be characterized as an adaptive procedure. It has a further
advantage in that it uses an interpretative procedure once the optimum
point is bracketed."

In the neighborhood of any one point the second derivatives of the
function to be optimized, £(X)*, specify a linear mapping of changes in
position, dX, onto changes in gradient Q._Y_ . These changes are expressed

for a change in the ith derivative, for example, as

N 2
d(bf)= r —-Q-f—dxj

0Ky) ~ 3a1 3xt I
afef \) = 1midaxd
X

where H:i':j is t:he Hessian matrix. As we know, the optimum point will require
that %%— vanishes and so the desired ché.nge in Xi (under the assumption
i

that the Hessian matrix is constant) will be

a -1 [_ _a_i\/l
oX,

ax g
In general H:"'j does not remain fixed and here lies the important contribu-

tion of VARMINT: correction of the Hessian matrix from iteration to itera-

9

tion. This idea was mentioned by Crockett and Chernoff” while discussing

*
f denotes the function to be optimized.

9.Crockett, J. B., and H., Chernoff, "Gradient Methods of Meximization,"
Pacific J. of Math., 5, 1955, 33-50.




the differences between the Newton method and the gradient methods.
The matrix H can be visualized as an error matrix and must be a

positive definite matrix. A suggested initial value for H is

Hii

(6%, )

iJ

H Ofori#.j

where SXi is estimated error in Xi' In the absence of a better estimate,
H may be teken to be the identity matrix of order N.

We use the version of VARMINT available at the Lawrence Radiation
Laboratory, the University of California, Berkeley (Deck ZOEOZO13-FORTRAN
I1).

2. MINFUN (A GENERAL MINIMIZING ROUTINE):

Humphrey saysloz "Briefly, the program is a FORTRAN control routine
and two subroutines which are designed to be used with & function sub-
routine to be coded by the user. This group of programs uses the ravine
stepping procedure to either explore the 'space' of the independent vari-
ables near the minimum or seek the actual set of variebles at the minimum
(at the option of the user). Provisions have been included to allow ex-
clusion of reéions of the variable space from the allowed steps."”

The whole opération of MINFUN can be made clear by considering a hypo-
thetical function f of two veriables (x, y). Figure No. 1 in Appendix B
shows the schematic representation of the optimization process. At point O,
the initial point, the starting direction is teken as being along the grad-
ient. A step is teken transverse to the line 0-1 from the point 1 to point
2. At point 2 the function is evaluated. Using the information available

at point 1 and 2, & minimum is predicted elong line 1-2 at point 3. The

\

lolimnphrey, W. E., "A General Minimizing Routine-Minfun," Lawrence
Radiation leboratory, University of California, Berkeley, Internal
Memorandum, September 1962 (9 pages).
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function is calculated at point 3 to verify the minimum at that point. To
complete the cycle, a step is now teken along the line 0-3 to a point 1' end
the operation repeats as described at point 1.

We are indebted to Mr. W. E. Humphrey for a copy of thg FORTRAN II
deck of his program as well as for fruitful conversations concerning the
use of MINFUN.

3. STEP (AN EXTREMUM LOCATING ALGORITHM):

The procedure used by STEP is designed to circumvent the existence of
locel cols (in the surface which is generated by the function) which point
in directions other than that of the minimum. When such cols exist, the
subroutine uses two points along the spine of the col for extrapolation (in
the direction of descent) to & point from which is sought the next spinal
point. If the minimum appears to be overshot, then an interpolation takes
place. Following this, probing parameters are scaled down, and the whole
procedure is iterated until either convergence occurs or the procedure
exceeds the limit on the number of iterations.

Baerll has written that: "Roughly put, the algorithm consists of using
alternatively two procedures: EXPLORING and HOMING. Exploring consists of
generating a sequence of restricted minima along the spine of the valley of
the surface generated by the junction. Homing consists of interpolation
between appropriate restricted minima when there is an indication that the
neighborhood of the required minimum has been overshot.

The efficiency of the procedure lies in the mode of generation of the
restricted minima. Having obtained more than one of these, one generates

the next by extrapolation (an appreciable distance) in the direction of the

llBaer, Robert M., "Note on an Extremum Locating Algorithm,"
The Computer Journal, Vol. 5, No. 3.
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vector difference of the preceding two, and then relying on the gradient.

Except for the first in this sequence of restricted minima, no great care
need be taken in their determination, inasmich as they need not be exact.”

It is interesting to add what Baer meens by restricted minimum. "If
Q, B are taken to be fixed vectors, and if t is a (real-valued) scaler, then
the minimm (with respect to t) of f(a + tB) will be called a RESTRICTED
MINIMUM. "

We used a FORTRAN II version of STEP available through the IBM Share
System. We are indebted to Dr. R. M. Beer of the Computing Center,
University of California, Berkeley, for helpful instructions to work prop-
erly with his code.

4, STEEPEST DESCENT

There are many codes using in different ways the steepest descent (or
ascent) ideas. We apply here e straightforward steepest descent proce-
dure available in PARTAN (described in a subsequent sectiom).

This version of the steepest descent method may be called optimum
gradient because it locates the optimum in the gredient direction at each
point. The code works as follows:12 (See Figure No. 2 in Appendix B.)

(1) Determine the direction of the gradient at the starting
point Po'
(11) Iocete the minimum on this "steepest descent" path; designate
this point as P2.
(ii11) Determine the direction of the gradient at P,.
(iv) Locate the minimum on this "steepest descent" path.

Designate this point as P3.

12hcerfler, T. E., "PARTAN, Minimization by Method of Parallel
Tengents," Iowa State University, April 1964, Internal Memorandum
(7 peges).



(v) Continue this procedure to Pp.
"A simple elgorithm using cubic interpolation is employed to estimate the
minimm on eny line x + As, where x is the origin of the line, s is the
vector determining the direction, and A is the step-size parameter to be
estimated."

It is interesting to notice that13 in principle the steepest descent
method will not reach the optimm in a finite number of steps because the
steps shorten as the point is approached. However, the optimum can be
approached as closely as desired, and if the starting point is not too near
the major axis the neighborhood of the optimum is attained rapidly.

5. ITERATED PARTAN

The general PARTAN code includes the version of steepest descent de-
scribed previously together with two variations of the PARALLEL TANGENTS
(PARTAN) technique as presented by B. V. Shah et 9_1_.11‘ Both variations of
PARTAN look for some sort of acceleration of the steepest descent search.
This is an attempt to reduce to a finite number the "infinite" number of
steps required to reach the optimum by means of the steepest descent pro-
cedure.

The authors of PARTAN say that in the two algorithms one proceeds to
optima of f on successive straight lines. The path directions are alter-
nately determined by positions of points already reached or by certain
gradient directions. They also say that all the theoretical results con-~

cern the "ideal" case, meaning by ideal:

134114, D. J., Optimm Seeking Methods. Prentice-Hall, Inc., 196k.

thha.h, B. V., R. J. Buehler and O. Kempthorne, "Some Algorithms
for Minimizing an Observable Function,"” Journal Soc. Ind. Appl. Math.,
Vol. 12, No. 1, March 1964, Ti-92,




(1) ? is quadratic;
(2) f and its gradient direction can be determined
v without error at any specified point;
(3) On any given line, the point at which f is an optimum
can be determined without error.
In the absence of error the procedure converges exactly to the optimum
in (20 - 1) steps for a quadratic function.
ITERATED PARTAN operates in the following way (Figure No. 3,
Appendix B):
(1) Connect P) and P; and locate the minimum on this extended
line. Designate this point as Ph'

(11) From here on re-do the steps involved in the steepest
descent process plus the previous one using Ph as the
starting point.

6. CONTINUED PARTAN

The so-called CONTINUED PARTAN, as was said before, is a variation of
the previous one and it involves the following steps (Figure 4, Appendix
B):15

(1) Determine the direction of the gradient at P;
(i1) Locate the minimum on this steepest descent path.
Designate this point as PS }
(111) Comect P, and P, and locate the minimum on this line.

Designate this point as P6;

(iv) Repeat the previous steps until obtaining P,; "always
taking a 'steepest descent' direction at P2 3 J =2, 3, «-0

and connecting P2 J__aa.ncl P2 3417

PARTAN acceleration step."

J=2’ 3, 'R fO‘r the

l"-See footnote 12, page T.
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We are indebted to Dr. O. Kempthorne and Mr. Thomas E. Doerfler both
from the Statistical Laeboratory of Iowa State University for a copy of the
FORTRAN II deck of PARTAN and its operating instructions.
7. LOXK

Onm——

LOOK is fully described in the reference in footnote 5 on page 3. It
may be described briefly as follow:s:l6
"1. 1Initialization. A starting point for the search is
ca.lcula.ted17 and stored.
"2, Exploratory seerch. Various moves are made to determine
& desirable direction for the search. Any move which is
better than the reference value is kept and becomes the
new reference value. On the initial entry or whenever the
exploratory search is not immediately preceded by a pattern
move, the reference value is the last base point. Follow-
ing a pattern move, the reference is the value at the end
of the pattern move.
"3, Success? If the best value found for the function during
the exploratory search is better than its value at the
last base point, a new base point is established. Other-
wise, the last base point is restored.
"4, Save base point and make Pattern Move. The latest
functional value replaces the previous value and the
corresponding values of the independent variables do like-

wise., This establishes a new base point. The pattern

16WOOd., C. F., "Recent Developments in ‘Direct Search' Techniques,"
Westinghouse Research Report 62-159-522-Rl.

1701' given as Data.



move is generated by moving each independent variable
away from the latest base point value by an amount
equal to the difference between the 0ld and new hase
point values. A pattern move i1s always followed im-
medietely by an exploratory search.

"5. Restore last Base Point. The independent variebles

are set at the values corresponding to the last base
point. The functional value for the same point becomes
the initial reference for testing the individual moves of
the exploratory search.

"6. Had Pattern Move just been mede. If the exploratory
search preceding the failure was itself preceded by a
pattern move, perform another exploratory search.
Otherwise, check for search completion.

"7. Can step size be reduced? If the step sizes for all the

independent variables are at their minima, the search
is complete. Otherwise, reduce step size and perform
another exploratory search."

As we see the final termination of the search is made when the step
size is sufficiently small to ensure that the optimum has been closely
approximated. In any case, the step size must be kept above a practical
limit imposed by the means of computetion. The search is stopped when
two conditions occur at the same time, nemely (1) the step size is at min-
imum and (2) the forward and reverse moves of all independent variables
fail following a base point test failure.

As Hooke and Jeeves say, "In practice, pattern search hes proved par-

ticularly successful in locating minima on hyper surfaces which contain
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‘sharp valleys'. On such surfaces classical techniques behave badly and
can only be induced to approach the minimm slowly."
We are indebted to Mr. C. F. VWood for a copy of the deck of LOK's
original FORTRAN II code.
8. BEST UNIVAR
This Direct Search Code uses one of the many possible strategies that
might be employed to determine subsequent trials as a function of previous
results.
BEST UNIVAR is fully described together with numerical examples in
two papers written jointly by Professor Merrill M. Flood and the author.la’ 19
BEST UNIVAR is available in FORTRAN II for IBM T709/7090 computers operated
either under the University of Michigan or the University of California
Executive Systems. Changes were introduced recently and the code is also
available now in FORTRAN IV for IBM 7090/7094 computers processed by the
FORTRAN IV campiler, and T090/7094 IBJOB Processor Component.
BEST UNIVAR may be described very briefly as follows:
1. Initialization. The optimization process is initiated
by picking up, as the starting point, an arbitrary point
inside the operating space.
2. Order of analysis. Once the function has been evaluated
at the starting point, the independent variables to be
changed are changed in an order selected initially by the

experimenter.

181"100:1 , Merrill M. and Alberto Leon, "A Direct Search Code for the

Estimation of Parameters in Stochastic Learning Models," Preprint 109,
Mental Health Research Institute, The University of Michigan, May 1963

(63 pages).

lgFlood, Merrill M. and Alberto Leon, "A Generalized Direct Search
Code for Optimization," Preprint 129, Mental Health Research Institute,
The University of Michigan, June 1964 (64 pages).
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One-at-a-time search. After deciding upon the order in
vhich to search the one-at-a-time search is initiated.
Let Xi be the first variable under study; this variable
is incremented by an asmount A 4 holding the other vari-
ables at their initial values. If the functional value at
this point is better than the one at the preceding point
there is some reason for trying further in the same direc-
tion. A larger step size is now used, taken equal to kiAi
(where A > 1), and if a better functional value (compering
against the immediately previous one) is obtained, a step
of length hiAi is used next. We continue in the same
direction by powers of xi until no further improvement is
obtained. Assume that step )‘?ﬂAi was the first unsuc-
cessful one; in this case the preceding base point is kept,
namely the one obtained by step A.I;Ai and e pnew sequence is
started from this point with initial step size equal to Ai
following the same scheme as before. If a step of Ai in the
positive direction does not bring a better point, then
a step of length Ai in the negative direction is tried;
if this happens to be & successful step, the KiAi is tried
in the same negative direction continuing in the same
fashion as was done in the positive direction. TFinally,
we reach a point where no improvement is obtalned by moving
variable Xi either Ai or -Ai; this point is considered
to be the best temporarily for variable Xi. After the best
point in the X1 direction is found the second variable in

the list is ready to be analyzed. The process is repeated
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until the total number of variables to be analyzed has been
studied and a point X' presenting the best functional value
of the round is reached.
Pattern Move. If the functional velue f' at the end of step
3 is better than the initial one f then the pattern move is
tried. The coordinates of the f' point are incremented by
an amount proportional‘to the change experienced for the
coordinates in going from f to f'. This rate of change will
be greater than one. If point f'', after the ihitial pattern
move, happens to be better than f', a new step of length
(AP)(AP) is teken in the same direction. The role of AP
here is identical to that of A in the one-at-a-time portion
of the process. The process here follows the same scheme
explained in phase 3. As before, when a point is reached
vhere no improvement is obtained by moving the vector either
(&P) or -(AP), this point is considered the best of this
series of pattern moves.

If the point obtained after a series of pattern moves
is better than the point at the beginning of the series
(i.e., at the end of the one-at-a-time round), e new round
of the one-variasble-at-a-time phase, as it was previously
described, is attempted, and the process is kept going until
no better points are found. If the pattern move phase
happens to be a failure, a one-at-a-time round will be tried,
resulting either in the final point, i.e., the optimum
searched (as far as the technique can tell), or in the con-

tinuation of the optimization calculation.
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It is easily seen from the above comments that the end
point of the process will always be the starting point of a

one-variable-at-a-time phase.

THE SAMPLE PROBLEMS

The techniques described previously are tested with a group of five two-
vaeriable unconstrained functions.

Three of the problems are by Witte and Holstzo ; we Xeep the nemes
given to these functions in the original paper so they will be called:
SHALOW, STRAIT, and CUBE. The fourth problem was presented for the first
time by H. H. Rosenbrock21 and also included by Witte and Holst who called
it ROSIE. Owr fifth problem is one presented and analyzed by E. M. L.
Beale”” and by Sheh et al.2; ve call this one BEALE.

The following are the algebraic expressions of our set of problems
(to be minimized):

ROSIE = 100 (y-x°)2 + (1-x)?

SHALOW = (y-xz)2 + (ZI.-x)2

STRATT = (y-x°)2 + 100(1-x)>

CUBE = 100 (y-x3)2 + (1-x)2

3 1
BEAIE = L U2 whereUi;-'Ci-x(l-Y)
1= 1

and vhere C, = 1.5, C, = 2.25, C

1 = 2,625

3

See reference 1, p. 1.

2:Ll’losenbrock, H. H., "An Automatic Method for Finding the Greatest
or least Value of a Function," Computer J., Vol. 3, October 1960, 175-18L.

22See reference 2, p. 1l.

23See reference 14, p. 8.
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ROSIE has & minimm f = 0 at (1, 1), with a steep valley along y = xa,
and a side valley along the negative y - axis.

SHALOVW presents & minimum of £ = 0 at (1, 1) with valleys along y = x2
and x = 1. "SHALOW is similar to the function ROSIE but has a shallow
valley compared with the steep valley of ROSIE."2h

STRAIT has its minimum of £ = O at (1, 1) with a steep valley along
x =1,

CUBE presents a minimm f = O at (1, 1) with a steep valley along
Yy = x3 .

BEALE has a minimm of £ = O at (3, 0.5) with a narrow curving valley
approaching the line y = 1.

Each one of the problems is solved beginning the optimization calcula-
tion at five different starting points so as to expose each procedure to
&8 variety of topographical conditions. We use in ROSIE, SHALOW, STRAIT
and CUBE the same initial points of Witte and Holst. We pick up for BEALE
five of the starting values used by Shah et al., in fact the ones we feel
to be the most difficult ones.

The results are recorded in the Tables of Appendix A. Each table
contains, for a particular problem, the initial values together with the
following information pertaining to each one of the optimizing codes:

a. Final Values. The optimm functional value together with
the corresponding vector.

b, KNumber of times the evaluating function is called. In some
of the codes this subroutine is called to evaluate the derivatives at some

point without functional evaluation at all; however, these two calls

ahSee reference 1, page l.
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are not separated and both are recorded as functional evaluations.

¢. Execution time in seconds. Internal clock readings are
teken both at the beginning and end of each one of the problems by meeans
of a library subroutine of the Berkeley System. This subroutine is for
use on the BC TO90 equipped with the Delco clock on cha.nnel-H.

d. Number of cycles. A cycle has a different meaning in each
one of the codes. We describe very briefly the definition of cycle for the
techniques we are dealing with:

BEST UNIVAR. A complete cycle includes the one-varisble-at-a-
time phase and the series of pattern moves following the previous one.

LOK. A cycle is defined here as the exploratoi'y search plus
the pattern move.

VARMINT. A cycle includes establishing a direction to search,
determining if the local minimum has been sufficiently well located and the
modification of the H matrix on the bases of previous information.

MINFUN. A cycle here is as follows: determination of the
gradlent direction, step transverse to the gradient direction at the end
of the previous step, prediction and verification of a minimum, step in
the direction of the vector initial point - actual minimm.

STEP. Each iteration involves the necessary operations to
locate a new restricted minimum.

ITERATED PARTAN. The cycle includes the operations (i) and
(i1) explained in the description of this optimizing code.

CONTINUED PARTAN. A cycle here is understood as one including
steps (1), (11), (ii1), and (iv) explained in the description of this

optimizing procedure.
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STEEPEST DESCENT. A cycle is defined here as the phase of the
optimizaetion process including steps (i), (1i), (1i1), and (iv) of the

code's description.

REMARK

The following general conclusions seem to be appropriate in view of
the results summarized in Appendix A.

VARMINT presents the most consistent behavior among the group of
techniques based on conventional mathematicel methods. Similar results

are reported by M. J. Boxa5

working with a different group of techniques on
a different set of problems. Box says that "Whilst these results are open
to various interpretations, the conclusion reached is that Davidon's method
is & more efficient optimizer then Rosenbrock's method, perhaps by a factor

of 2 or 3."26

Box's results together with our results are in accordance
with the following remarks by Fletcher and Pcmell:27 "Davidon's work has
been little publicized, but in our opinion constitutes a considerable ad-
vance over current alternatives." Fletcher and Powell add in the same
reference that their results with & variety of numerical tests "confirm
that the method is probably the most powerful gemerel procedure for finding
a local minimum which is known at the present time."

STEP shows good results with functions ROSIE, SHALOW, STRAIT and CUBE.

It does not work too well with BEALE, specially approaching the narrow

25]30::, J. M., "Lecture Notes on Direct Search Methods of Optimization,"
Imperial Chemical Industries, Ltd., Central Instrumental Laboratory,
England, October 1963 (13 pages).

26'.l:'he gsame &8 ours.

27netcher, R., and M. J. D. Powell, "A Rapidly Convergent Descent
Method for Minimization," The Computer J., Vol. 6, Fo. 2, 1963, 163-168.
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curving "valley" from the almost flat region at the lower right cornmer
of the space.

BEST UNIVAR of the direct search type of technigues exhibits the most
consistent behavior of its group. IOCK requires lower computing time and
presents better numerical velues when it approaches the true optimum;
however, its work on CUBE and BEALE is quite unsatisfactory.

One of the easential characteristics of direct search procedures for
optimization is that they do not require derivatives of the obJjective
function. These techniques are then adequate to treat difficult optimi-
zation problems involving functions with meany variebles. Furthermore,
algebraic expressions for the optimization function are not necessary.

All that is required is a way of finding functional values but without
having the function available in algebraic form at all. In cases involv-
ing difficult functions or having no algebraic expressions for the ob-
Jective function, the application of VARMINT or similar procedures would
be impossible.

It is interesting to note the similarities in behavior between STEP
and 10K while optimizing BEALE. Further analysis of these results will
be attempted in the near future.

CUBE proves to be the most difficult function for all the techniques.
It takes the longest computing time to reach its true solution if compared
against the other functions. MINFUN, ITERATED PARTAN, STEEPEST DESCENT
and I0K do not even approach the optimum of CUBE in most of the cases.

Some experiences with the same group of codes increasing the dimen-
sionality of the function to be optimized and also introducing constraints

will be reported elsevhere.
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